Difference between revisions of "RosettaCode Monty Hall"
Peter gummer (Talk | contribs) (Monty Hall implementation that compiles and runs) |
Peter gummer (Talk | contribs) m (→Eiffel code) |
||
Line 11: | Line 11: | ||
Staying wins 333504 times. | Staying wins 333504 times. | ||
+ | |||
Switching wins 666496 times. | Switching wins 666496 times. | ||
Revision as of 18:40, 11 August 2012
Reference
Statement of the Monty Hall problem on RosettaCode: here.
Deadline for adding to RosettaCode page: 31 Aug 2012; submitter:
Eiffel code
Here's a candidate implementation. This compiles and runs, producing output similar to this:
Staying wins 333504 times.
Switching wins 666496 times.
class MONTY_HALL create make feature {NONE} -- Initialization make local games_count: INTEGER do create random_generator.make games_count := 1000000 across 1 |..| games_count as game loop play end print ("Staying wins " + staying_wins.out + " times.%N") print ("Switching wins " + (games_count - staying_wins).out + " times.%N") end feature -- Commands play local doors: ARRAYED_LIST [BOOLEAN] chosen, shown: INTEGER do create doors.make_filled (Door_count) -- False is a goat, True is a car doors [next_random_door] := True -- Put a car behind a random door chosen := next_random_door -- Pick a door, any door -- Monty selects a door which is neither the winner nor the choice from shown := next_random_door until shown /= chosen and not doors [shown] loop shown := next_random_door end if doors [chosen] then -- If you would have won by staying, count it staying_wins := staying_wins + 1 end ensure staying_wins_valid: staying_wins = old staying_wins or staying_wins = old staying_wins + 1 end feature {NONE} -- Implementation Door_count: INTEGER = 3 -- The total number of doors. staying_wins: INTEGER -- The number of times that the strategy of staying would win. random_generator: RANDOM -- A random number generator for selecting doors. next_random_door: INTEGER -- A door chosen at random. do random_generator.forth Result := random_generator.item \\ Door_count + 1 ensure valid_door: Result >= 1 and Result <= Door_count end end
Comments
Note that the implementations in many other languages maintain a separate variable to count the number of switch wins. They calculate whether switching wins at each step via some funky logic that relies on zero-based array indexing, which would be inconvenient in Eiffel. But we don't need to do that at all anyway, because calculating it at each step is completely redundant: we can just do a final subtraction at the end, right?