DynBindModelHaskell
Some set theory:
--Set theory import Data.Set --domain of a relation dom :: (Ord a, Ord b) => Set (a, b) -> Set a dom s = Data.Set.map (\(d, r) -> d) s --range of a relation ran :: (Ord a, Ord b) => Set (a, b) -> Set b ran s = Data.Set.map (\(d, r) -> r) s --identity of a set ids :: (Ord a) => Set a -> Set (a, a) ids s = Data.Set.map (\e -> (e, e)) s --domain substraction domSub :: (Ord a, Ord b) => Set a -> Set (a, b) -> Set (a, b) domSub s r = fromList [(e1,e2) | (e1,e2) <- (toList r), (notMember e1 s)] --range restriction ranRes :: (Ord a, Ord b) => Set (a, b) -> Set (b) -> Set (a, b) ranRes r s = fromList [(e1,e2) | (e1,e2) <- (toList r), (member e2 s)] --override (<<) :: (Ord a, Ord b) => Set (a, b) -> Set (a, b) -> Set (a, b) (<<) s t = union t (domSub (dom t) s) --composition comp :: (Ord a, Ord b, Ord c) => Set (a, b) -> Set (b, c) -> Set (a, c) comp r v = fromList [(e1, e4) | (e1,e2) <- toList r, (e3,e4) <- toList v, e2 == e3 ] --inverse inv :: (Ord a, Ord b) => Set (a, b) -> Set (b, a) inv r = fromList [(e2,e1)|(e1,e2) <- toList r] --relation image image :: (Ord a, Ord b) => Set (a, b) -> Set (a) -> Set (b) image r w = fromList [e2 |(e1,e2) <-toList r, member e1 w]
The naming function
beta :: Int -> Int -> Int -> Set (String, String) beta 0 0 0 = empty beta m q p | q > p = empty | p > m = empty | p < m = beta(m-1) q p | q < p = betaPrime m q << theta m q | otherwise = (ids(dom (tau m))) `union` unions [ids(ran (beta (m-1) b b << eta m b)) | b <- toList (alpha m)] betaPrime :: Int -> Int -> Set (String, String) betaPrime m q = unions [beta (m-1) q b `comp` (ids(ran (beta(m-1) q b)) << eta m b) | b <- toList (alpha m)] theta :: Int -> Int -> Set (String, String) theta m q = unions [beta(m-1) q b `comp` (ids(ran (beta(m-1) q b)) << eta m b) `ranRes` sigma m b | b <- toList (alpha m)]
--The dynamic binding function
gamma :: Int -> String -> Set (Int, String) gamma st fn = fromList [(dt, f)|dt <- [1..n], f <- toList (image (delta n st dt) (fromList [fn]))] delta :: Int -> Int -> Int -> Set (String, String) delta m q p | p > m = empty | q > p = empty | p < m = delta (m-1) q p | otherwise = beta n q m `comp` ( unions [(inv (beta n b b << eta m b)) `comp` delta (m-1) b b | b <- toList (alpha m)] << tau m)
An example system
tau:: Int -> Set (String, String) tau 1 = fromList [("f1", "C1.f1"), ("g1", "C1.g1"), ("s1", "C1.s1")] tau 2 = fromList [("f2", "C2.f2"), ("g2", "C2.g2"), ("s1", "C2.s1")] tau 3 = fromList [("f1", "C3.f1"), ("g1", "C3.g1"), ("s1", "C3.s1")] eta:: Int -> Int -> Set (String, String) eta 2 1 = fromList [("f1", "f2"), ("g1","g2")] eta 3 1 = empty eta 3 2 = empty alpha:: Int -> Set (Int) alpha 1 = empty alpha 2 = insert 1 empty alpha 3 = fromList [1, 2] sigma:: Int -> Int -> Set (String) sigma 2 1 = empty sigma 3 1 = insert "g1" empty sigma 3 2 = insert "f2" empty n :: Int n = 3