Difference between revisions of "RosettaCode Monty Hall"
Peter gummer (Talk | contribs) (→Eiffel code) |
Peter gummer (Talk | contribs) m |
||
Line 53: | Line 53: | ||
</e> | </e> | ||
− | |||
− | |||
==Comments== | ==Comments== | ||
+ | |||
+ | Note that the implementations in many other languages maintain a separate variable to count the number of switch wins. They calculate whether switching wins at each step via some funky logic that relies on zero-based array indexing, which would be inconvenient in Eiffel. But we don't need to do that at all anyway, because calculating it at each step is completely redundant: we can just do a final subtraction at the end, right? |
Revision as of 15:15, 9 August 2012
Reference
Statement of the Monty Hall problem on RosettaCode: here.
Deadline for adding to RosettaCode page: 31 Aug 2012; submitter:
Eiffel code
Here's an initial implementation, just to get things started. I just typed this straight into the wiki, so it might not even compile.
Please feel free to edit this in place, I won't be offended.
class MONTY_HALL feature play local games: INTEGER random: RANDOM doors: ARRAYED_LIST [BOOLEAN] chosen, shown: INTEGER stayWins: INTEGER do games := 1000000 create random.make across 1 |..| games as plays loop create doors.make_filled (3) -- False is a goat, True is a car random.forth doors [random.item \\ 3 + 1] := True -- Put a car behind a random door random.forth chosen := random.item \\ 3 + 1 -- Pick a door, any door from shown := chosen until shown /= chosen and not doors [shown] loop random.forth shown := random.item \\ 3 + 1 end if doors [chosen] then -- If you would have won by staying, count it stay_wins := stay_wins + 1 end end out ("Staying wins " + stay_wins + " times.%N") out ("Switching wins " + games - stay_wins + " times.%N") end end
Comments
Note that the implementations in many other languages maintain a separate variable to count the number of switch wins. They calculate whether switching wins at each step via some funky logic that relies on zero-based array indexing, which would be inconvenient in Eiffel. But we don't need to do that at all anyway, because calculating it at each step is completely redundant: we can just do a final subtraction at the end, right?